Heat Shock Proteins in Cancer: Signaling Pathways, Tumor Markers and Molecular Targets in Liver Malignancy

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

Heat shock proteins (HSPs) consist of a large group of proteins with negligible expressions under physiological conditions. Their expressions are highly induced under stress conditions and they are ubiquitously expressed in various tissues and organs. HSPs possess chaperone functions, thus facilitating the correct folding of proteins or peptides. In hepatocellular carcinoma (HCC), high expressions of HSPs are demonstrated in liver cancer tissues and are correlated clinically with the severity of tumors and poor outcomes of HCC patients. This property enables them to be used as diagnostic markers for the onset of HCC. Since their expressions are highly expressed in liver cancer conditions, inhibitors or antisense oligonucleotides of HSPs are postulated to serve as potential therapeutics in treating this liver malignancy. In this review, we will first introduce the HSP family and discuss the major signaling pathways involved for the activities of HSPs. In addition, the clinical applications of HSPs in liver cancer in the aspects of diagnosis and therapy will be summarized and discussed.





Keywords: Heat shock protein; diagnostic biomarkers; hepatocellular carcinoma; therapeutic targets

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986609788167752

Publication date: May 1, 2009

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more