Skip to main content

Efficient Gene Transfer to Rat Fetal Osteoblastic Cells by Synthetic Peptide Vector System

Buy Article:

$63.00 plus tax (Refund Policy)

We synthesized a 15-amino acid bi-functional synthetic peptide, RPC2, with the sequence Ac-CGKRKWSQ PKKKRKV-Cysteamide, which consists of a 7-amino acid nuclear localization signal (NLS) domain at the carboxyl terminus that electrostatically binds DNA and a 5-amino-acid tumor-homing domain at the amino terminus. This peptide efficiently delivered GFP and Renilla luciferase reporter genes into rat primary osteoblastic cells while exhibiting low cytotoxicity. The optimal delivery was achieved when the ratio of DNA: RPC2 reached 1:10 (w/w). Transfection efficiency can be further enhanced by the addition of Lipofectamine 2000 and modification of RPC2. These results indicated that RPC2 can deliver exogenous DNA into primary osteoblastic cells with low cytotoxicity and be potentially utilized in experimental and clinical applications in the field of bone tissue engineering.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: GFP; Renilla luciferase reporter gene; Target gene delivery; bi-functional synthetic peptide; rat fetal osteoblastic cells; vector

Document Type: Research Article

Publication date: 01 April 2009

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more