Skip to main content

A Proteomic Approach to Study Escherichia coli. Acetyl Esterase Interactors Unveil a Sequence Motif Involved in Protein-Protein Interaction

Buy Article:

$55.00 plus tax (Refund Policy)

E. coli acetyl esterase (Aes) and β-cysthationase (MalY) interact, probably with the same mechanism, with the N-terminus of transcriptional activator of maltose regulon (MalT). In order to investigate the basic mechanism of this interaction, we used both a proteomic and a bioinformatic approach. Affinity-based mass spectrometry experiments with purified Aes protein as bait allowed to fish twenty-three, apparently specific, interactors from crude extracts of E. coli cells grown in different conditions. The group of interactors appeared quite heterogeneous, comprising Aes itself, some molecular chaperons, metabolic enzymes, and several proteins of unknown function. Among the identified proteins, two are in some way related to the maltose metabolism and two are related to the lipopolysaccharide metabolism. By superposing the structures of the Alicyclobacillus acidocaldarius EST2, an Aes homolog, and MalY, a region of structural similarity was discovered that allowed detecting a short stretch of nine residues with sequence similarity among EST2, AES and MalY. Degenerated sequence consensuses derived from the alignment were used to analyse the E. coli proteome in the Swiss Prot database and permitted to retrieve sequences of Aes interactors already known or detected in this study. Most of these interactors (14 out of 25) contain the expected consensus. A site-directed mutant of Aes R179A made in the consensus sequence resulted in complete loss of interaction. Based on the analysis of the available three-dimensional structures and mutagenic and structural data inferred from literature, we predict a role of this motif in protein-protein interaction.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Protein-protein interaction; acetyl esterase; affinity-based mass spectrometry; proteomic

Document Type: Research Article

Publication date: 2008-05-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more