Skip to main content

Binding of Tris to Bacillus licheniformis ??-Amylase Can Affect Its Starch Hydrolysis Activity

Buy Article:

$63.00 plus tax (Refund Policy)

Bacillus licheniformis ??-amylase (BLA) is routinely used as a model thermostable amylase in biochemical studies. Its starch hydrolysis activity has recently been studied in Tris buffer. Here, we address the question that whether the application of Tris buffer may influence the results of BLA activity analyses. Based on the inhibition studies and docking simulations, we suggest that Tris molecule is a competitive inhibitor of starch-hydrolyzing activity of BLA, and it has a high tendency to bind the enzyme active site. Hence, it is critically important to consider such effect when interpreting the results of activity studies of this enzyme in Tris buffer.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: BLA; Tris inhibition; activity; buffer inhibition; docking

Document Type: Research Article

Publication date: 01 February 2008

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more