Skip to main content

Identification and Analysis of Novel Amino Acid Sequence Repeats and Domains in Pyrobaculum aerophilum Using Computational Tools

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

We have identified four repeats and five domains that are novel in proteins encoded by the Pyrobaculum aerophilum str. IM2 proteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55 amino acid residues that occurs more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region comprising greater than 55 amino acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 85 amino acid residues AAG domain, (2) 72 amino acid residues GFGN domain, (3) 43 amino acid residues KGG repeat, (4) 25 amino acid residues RWE repeat, (5) 25 amino acid residues RID repeat, (6) 108 amino acid residues NDFA domain, (7) 140 amino acid residues VxY domain, (8) 35 amino acid residues LLPN repeat and (9) 98 amino acid residues GxY domain. A repeat or domain is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure.





Keywords: Pyrobaculum aerophilum; domain; genome; in silico analysis; repeats; sequence analysis

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986607781483903

Publication date: July 1, 2007

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
ben/ppl/2007/00000014/00000007/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more