Skip to main content

Enrichment of Multiphosphorylated Peptides by Immobilized Metal Affinity Chromatography Using Ga(III)- and Fe(III)-Complexes

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

The detection and identification of O-phosphorylation sites in proteins with mass spectrometry remains a challenge. A common approach to analyse these modifications is to enrich phosphopeptides by immobilized metal affinity chromatography (IMAC) prior to mass spectrometric analysis. In this study two commercially available IMAC kits based on Fe(III)-ions immobilized on magnetic beads and Ga(III)-ions immobilized on a chelate-resin, have been investigated and the binding efficiency of peptide mixtures containing non-phosphorylated, singly, doubly and triply phosphorylated peptides have been tested.





Keywords: imac; maldi; mass spectrometry; phosphopeptides; post-translational modifications; proteomics

Document Type: Research Article

DOI: https://doi.org/10.2174/092986607780782849

Publication date: 2007-05-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more