Skip to main content

Predicting Protein Structural Class with AdaBoost Learner

Buy Article:

$63.00 plus tax (Refund Policy)

The structural class is an important feature in characterizing the overall topological folding type of a protein or the domains therein. Prediction of protein structural classification has attracted the attention and efforts from many investigators. In this paper a novel predictor, the AdaBoost Learner, was introduced to deal with this problem. The essence of the AdaBoost Learner is that a combination of many 'weak' learning algorithms, each performing just slightly better than a random guessing algorithm, will generate a 'strong' learning algorithm. Demonstration thru jackknife cross-validation on two working datasets constructed by previous investigators indicated that AdaBoost outperformed other predictors such as SVM (support vector machine), a powerful algorithm widely used in biological literatures. It has not escaped our notice that AdaBoost may hold a high potential for improving the quality in predicting the other protein features as well, such as subcellular location and receptor type, among many others. Or at the very least, it will play a complementary role to many of the existing algorithms in this regard.

No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: AdaBoost; SVM; component-coupled; domain structural classes; jackknife cross-validation; neural network

Document Type: Research Article

Affiliations: Department of Chemistry, College of Sciences, Shanghai University, 99 Shang-Da Road, Shanghai 200436, China.

Publication date: 2006-05-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more