Skip to main content

Theoretical Approaches to Protein Aggregation

Buy Article:

$55.00 plus tax (Refund Policy)

The process of protein misfolding and aggregation has been associated with an increasing number of pathological conditions that include Alzheimer's and Parkinson's diseases, and type II diabetes. In addition, the discovery that proteins unrelated to any known disorder can be converted into aggregates of morphologies similar to those found in diseased tissue has lead to the recognition that this type of assemblies represents a generic state of polypeptide chains. Therefore, despite the enormous complexity of the in vivo mechanisms that have evolved in living organisms to prevent and control the formation of protein aggregates, the process of aggregation itself appears ultimately to be caused by intrinsic properties of polypeptide chains, in particular by the tendency of the backbone to form hydrogen bonds, and be modulated by the presence of specific patterns of hydrophobic and charged residues. Theoreticians have just recently started to respond to the challenge of identifying the determinants of the aggregation process. In this review, we provide an account of the theoretical results obtained so far.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Protein misfolding; aggregation mechanism; aggregation propensity; amyloid fibrils; molecular dynamics; protein aggregation; sensitive regions for aggregation

Document Type: Research Article

Affiliations: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

Publication date: 2006-03-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more