Skip to main content

Effects of [Nphe1]nociceptin(1-13)NH2, [Phe1(CH2-NH)Gly2]nociceptin(1- 13)NH2, and Nocistatin on Nociceptin Inhibited Constrictions of Guinea Pig Isolated Bronchus

Buy Article:

$63.00 plus tax (Refund Policy)

Electric field stimulation (EFS) causes excitatory non adrenergic-non cholinergic (eNANC) and cholinergic constrictions in the guinea pig isolated bronchus, the activation of eNANC and cholinergic nerves respectively. We investigated the effects of [Nphe1]nociceptin(1-13)NH2 ([Nphe1]NC(1-13)NH2), [Phe1(CH2-NH)Gly2]nociceptin(1- 13)NH2 ([F/G] NC(1-13)NH2), and nocistatin (NST) on nociceptin (NC) inhibited constrictions in isolated bronchus of guinea pig. The results show that NC (1 μmol/L) inhibited EFS-induced eNANC and cholinergic constrictions compared with the control, in which nociceptin was not applied. After pretreatment with [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2, or NST, the inhibitions of NC were antagonized by [Nphe1]NC(1-13)NH2 and [F/G]NC(1-13)NH2 but not NST. However, [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2, and NST did not affect the inhibitions induced by morphine. Furthermore, [Nphe1]NC(1-13)NH2, [F/G]NC(1-13)NH2 and NST did not cause any appreciable effects on EFS-induced eNANC and cholinergic constrictions in guinea pig bronchi. The results demonstrate that [Nphe1]NC(1-13)NH2 and [F/G]NC(1- 13)NH2 but not NST act as selective antagonists of the NC receptor and the effects of NC on EFS-induced constrictions of guinea pig isolated bronchus.

No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Nociceptin; [Nphe1]nociceptin(1-13)NH2; [Phe1(CH2-NH)Gly2]nociceptin(1-13)NH2; bronchus; electric field stimulation; morphine; nocistatin

Document Type: Research Article

Affiliations: Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, People's Republic of China.

Publication date: 2006-02-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more