Skip to main content

The Monomers of the P2X1 Receptor Model and KcsA Protein Share a Similar Structural Fold.

Buy Article:

$55.00 plus tax (Refund Policy)

There is evidence that the P2X1 receptor subunit is involved in apoptosis, platelet aggregation, and smooth muscle contraction. The conformation of the membrane-embedded, ligand-gated mouse P2X1 glycoprotein, a monovalent-bivalent cation channel-forming receptor, is predicted. The first step is based on secondary structure prediction. The secondary structure is converted into a three-dimensional geometry. Then, the secondary and tertiary structures are optimized by using the quantum chemistry RHF/3-21G minimal basic set and the all-atom molecular mechanics AMBER96 force field. The fold of the membrane-embedded protein is simulated by a suitable dielectric. The structure is refined using a conjugate gradient minimizer (Fletcher-Reeves modification of the Polak- Ribiere method). Although the mouse P2X1 receptor subunit is more complex (388 amino acids) than the KcsA protein (160 amino acids), the overall folds are similar. The geometry optimized P2X1 receptor subunit is freely available for academic researchers on e-mail request (PDB format).

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: ATP-activated purinergic receptor; Cation channel; KcsA protein; P2X receptor; Structural bioinformatics

Document Type: Research Article

Affiliations: Research Group of Pharmacochemistry, Institute of Pharmacology and Toxicology, University of Leipzig, D-04107 Leipzig, Hartelstr, 16-18, Saxony, Germany.

Publication date: 2006-01-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more