Skip to main content

Review: Why is Arginine Effective in Suppressing Aggregation?

Buy Article:

$55.00 plus tax (Refund Policy)

Arginine is finding a wide range of applications in production of proteins. Arginine has been used for many years to assist protein refolding. This effect was ascribed to aggregation suppression by arginine of folding intermediates during protein refolding. Recently, we have observed that arginine facilitates elution of antibodies during Protein-A chromatography and solubilizes insoluble proteins from inclusion bodies, which both can be ascribed to weakening of protein-protein interactions. In order to gain understanding on why arginine is effective in reducing protein-protein interactions and suppressing aggregation, the effects of arginine on stability and solubility of pure proteins have been examined, which showed that arginine is not a protein-stabilizer, but is an aggregation suppressor. However, there is no explanation proposed so far on why arginine suppresses aggregation of proteins. This review addresses such question and then attempts to show differences between arginine and strong denaturants, which are also known as an aggregation suppressor.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Arginine; Protein-A; chromatography; protein-protein interactions

Document Type: Review Article

Affiliations: Alliance Protein Laboratories, 3957 Corte Cancion, Thousand Oaks, CA 91360, USA;

Publication date: 2005-10-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more