Skip to main content

Misfolded Proteins and Human Diseases

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Though protein folding is a regular phenomenon inside the cellular milieu, slight differences in the folding pattern of proteins may lead to disease-causing forms. Many diseases have been identified that are caused by these misfolded macromolecules and a considerable amount of focus is still directed towards better understanding of the processes that lead to these misfolded structures. Further progress in the field of how soluble proteins begin to misfold and how resultant oligomers begin dysfunction offers exciting prospects for specific molecular intervention.

Keywords: human diseases; misfolding; protein aggregation; protein folding

Document Type: Review Article

DOI: https://doi.org/10.2174/0929866043406409

Affiliations: Department of Chemistry, Aligarh Muslim University, Aligarh, and Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.

Publication date: 2004-12-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more