Skip to main content

Hemodynamic Regulation of Metallopeptidases within the Vasculature

Buy Article:

$63.00 plus tax (Refund Policy)

Hemodynamic forces associated with blood flow play a vital role in the endothelial regulation of vascular tone, remodeling and the initiation and progression of vascular diseases such as atherosclerosis and hypertension. Crucial elements in endothelium-mediated events within the blood vessel are bioactive peptide signals and their associated hydrolytic enzymes. This review examines the relationship between hemodynamic forces such as shear stress and cyclic strain, and an important group of peptide-degrading enzymes within the endothelium, the thermolysin-like zinc metallopeptidases.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: cyclic strain; endothelial; metallopeptidase; shear stress; thermolysin-like

Document Type: Review Article

Affiliations: Vascular Health Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.

Publication date: 2004-10-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more