Skip to main content

Spectroscopic Characterization Of Phaseolus Vulgaris Leucoagglutinin

Buy Article:

$63.00 plus tax (Refund Policy)


Phaseolus vulgaris leucoagglutinin is a homotetrameric legume lectin possessing the canonical dimeric structure common to other legume lectins. In order to gain insight into the stability of the protein in an acidic environment, it was characterized by CD and fluorescence studies at pH 2.5. This was then compared with the native protein at physiological pH (7.2). The extinction coefficient of the native protein was calculated to be 3.58x104 from its UV absorption spectra. The far- and near-UV CD spectra of the protein at pH 2.5 showed very little difference even though the protein was found to exist as a dimer at pH 2.5. The fluorescence emission maxima of the protein upon excitation at 280 nm were found to shift only from 331 nm at pH 7.2 to 333 nm at pH 2.5. Based on the above observation it was concluded that the protein exhibits extreme pH stability especially in the acidic range. The secondary and tertiary structure of the protein is lost only when it is incubated for two days in 6 M GdnHCl at pH 2.5. At pH 7.2 it could be denatured in 6 M GdnHCl after one week of incubation.

Keywords: phaseolus vulgaris leucoagglutinin; plant lectins; spectroscopic characterization

Document Type: Review Article


Affiliations: School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221 005, India

Publication date: February 1, 2004

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics