Skip to main content

Peptide Toxins Directed at the Matrix Dissolution Systems of Cancer Cells

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Growth and spread of tumors requires a variety of membrane and extracellular proteases to modify membrane integrins, dissolve the surrounding matrix and release critical growth factors from both the tumor cell surface and surrounding structures. The two major protease systems involved in this process are the matrix metalloproteases and the serine proteases. Genes and gene products for both protease systems are overexpressed in a variety of neoplasms. Thus, these enzymes serve as excellent targets for the delivery of potent cytotoxic molecules to tumors. A number of peptide toxins have been engineered to bind to tumor cells with high levels of surface proteases and their receptors including anthrax toxins, Pseudomonas exotoxin, saporin and diphtheria toxin. These recombinant fusion proteins provide a novel class of anti-cancer agents that will enter clinical trials in the next several years.

Keywords: 2,5-diphenyltetrazolium; CANCER CELLS; N-glycosidic bond of NAD; N-terminal epidermal growth; PROTEASE SYSTEMS; Peptide Toxins; Pseudomonas exotoxin (PE); cleft glutamate

Document Type: Review Article

DOI: https://doi.org/10.2174/0929866023409048

Publication date: 2002-02-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more