Skip to main content

Pharmacophore Modeling, Atom Based 3D-QSAR and Docking Studies of Protein Tyrosine Phosphatase 1B Inhibitors

Buy Article:

$55.00 plus tax (Refund Policy)

Inhibitors of Protein Tyrosine Phosphatase 1B (PTP 1B), a negative regulator of insulin signal transduction, have been explored as potential antidiabetic agents. In the present work a series of bromo-retrochalcones as PTP 1B inhibitors have been used for pharmacophore modeling, atom based 3D-QSAR and docking studies. A five-point pharmacophore with two hydrogen bond acceptors (A), two aromatic rings (R), and one hydrophobe (H) as pharmacophoric features was developed using PHASE. The pharmacophoric hypothesis was used to generate statistically significant 3DQSAR models. The best model showed good PLS statistics characterized by survival score (9.306), cross-validated r2 (Q2) (0.706), regression coefficient r2 (0.861), Pearson-R (0.853), and F value (76.4). Taken together, the Partial least square (PLS) generated 3D-QSAR pharmacophore and regression cubes along with structure based drug design provided a three dimensional topological view of the active site that can be used for the rational modification of bidentate PTP 1B inhibitors.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Docking; MM-GBSA; PHASE; Partial least square; Pharmacophore; Structure based drug design

Document Type: Research Article

Publication date: 2013-05-01

More about this publication?
  • Letters in Drug Design & Discovery publishes original letters on all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis will be on publishing quality papers very rapidly. Letters will be processed rapidly by taking full advantage of Internet technology for both the submission and review of manuscripts. The journal is essential reading to all pharmaceutical scientists involved in research in drug design and discovery.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more