Skip to main content

DNA Drug Design for Cancer Therapy

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

DNA (antisense and other oligonucleotides) drug design represents a direct genetic approach for cancer treatment. Such an approach takes advantage of mechanisms that activate genes known to confer a growth advantage to neoplastic cells. The ability to block the expression of these genes allows exploration of normal growth regulation. Progress in DNA drug technology has been rapid, and the traditional antisense inhibition of gene expression is now viewed on a genomic scale. This global view has led to a new vision in antisense technology, the elimination of nonspecific and undesirable side effects, and ultimately the generation of more effective and less toxic nucleic acid medicines. Several antisense oligonucleotides are in clinical trials, are well tolerated, and are potentially active therapeutically. DNA drugs are promising molecular medicines for treating human cancer in the near future.

Keywords: antisense; cancer; dna drugs; gene expression; growth inhibition; oligonucleotides; transcription factor decoy

Document Type: Review Article

DOI: https://doi.org/10.2174/1381612054546770

Affiliations: Cellular Biochemistry Section, BRL, CCR, National Cancer Institute, Bldg. 10, Rm. 5B05, 9000 Rockville Pike, Bethesda, MD 20892-1750, USA.

Publication date: 2005-08-01

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more