Skip to main content

Sub-Cellular Distribution and Translocation of TRP Channels

Buy Article:

$63.00 plus tax (Refund Policy)


Cellular electrical activity is the result of a highly complex process that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both, cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

Keywords: ACh-containing vesicles; AMPA1; Aquaporin 2 (AQP2) water channel; ArF6-positive; CLATHRIN-DEPENDENT; Ca2+ release-activated; Caveolae Related Proteins; Cellular electrical activity; Dynamin; ENaC epithelial sodium channel; Exocytosis; GABA3; Kinase-inactive mutants; Kv channels; Mechanotransduction; NMDA2; PACSIN3; PKC9-dependent exocytosis; Rab Proteins; Synaptic Vesicle; TRP channels; TRPML; Transient Receptor Potential; Varitint-Waddler; Xenopus oocytes; Yeast two-hybrid assays; ansmembrane (TM) monomers; botulinum neurotoxin; capsaicin receptor; cytosolic ADP-ribose (ADPR); heteromultimeric channel complexes; ion channel proteins; ion exchange gel theory; mGluR6-coupled cation; modulated by NAADP; mucolipin; phorbol ester 4-PDD; recycling endosome; regulated exocytosis; thapsigargin-insensitive store; traffic; tubulo-vesicular structures; vesicles

Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in both pre-clinical and clinical areas of Pharmaceutical Biotechnology. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics