Skip to main content

Palmitoylethanolamide Restores Myelinated-Fibre Function in Patients with Chemotherapy-Induced Painful Neuropathy

Buy Article:

$63.00 plus tax (Refund Policy)


We assessed the effect of palmitoylethanolamide (PEA) on pain and nerve function in patients with chemotherapy-induced painful neuropathy, in 20 patients undergoing thalidomide and bortezomib treatment for multiple myeloma. All patients were evaluated before and after a two-month treatment with PEA 300 mg BID using pain and warmth thresholds; blinded examiners measured motor and sensory nerve fibre function and laser-evoked potentials. Although no variables returned to normal values, pain and all neurophysiological measures—assessing Aα, Aβ, and Aδ fibres— significantly improved (P < 0.05). In contrast, warmth thresholds, assessing unmyelinated afferents, remained unchanged (P > 0.50). Although a placebo effect might play a role in the reported pain relief, the changes in neurophysiological measures indicate that PEA exerted a positive action on myelinated fibre groups. PEA, possibly by moderating mast cell hyperactivity, relieved conduction blocks secondary to endoneural edema. In a severe condition such as painful neuropathy associated with multiple myeloma and chemotherapy, a safe substance such as PEA provides significant restoration of nerve function.

Keywords: Bortezomib; CMAPs; laser evoked potentials; multiple myeloma; nerve conduction study; painful neuropathy; palmitoylethanolamide; thalidomide

Document Type: Research Article


Publication date: December 1, 2011

More about this publication?
  • CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will contain a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in neurological and CNS disorders. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more