Skip to main content

Brain Adaptation to Stressful Stimuli: A New Perspective on Potential Therapeutic Approaches Based on BDNF and NMDA Receptors

Buy Article:

$63.00 plus tax (Refund Policy)


A variety of sublethal or stressful stimuli induce a phenomenon in the brain known as tolerance, an adaptive response that protects the brain against the same stress, or against a different stress (cross-tolerance). Understanding the molecular mechanisms of brain preconditioning holds promise in developing innovative therapies to prevent and treat neurodegenerative disorders, particularly ischemic stroke. Many of the detailed steps involved in tolerance and crosstolerance are unknown. It is also likely that different stressors differentially regulate sets of genes, transcription factors, and signal transduction pathways that depend upon the molecules that are released in response to the stressor, activation of particular receptors, and the surrounding milieu. The focus of this review is to highlight a few examples of stimuli that induce tolerance: 1) cortical spreading depression; 2) 3-nitropropionic acid; and 3) 2-deoxy-D-glucose. We will summarize by discussing one pathway where intracellular mediators may converge to upregulate intrinsic neuronal survival pathways to promote survival by resisting damage. This mechanism, activation of N-methyl-D-aspartate receptors and its integral relationship with brain-derived neurotrophic factor, may be a critical and general mechanism developed in brain to respond to stressful stimuli.

Keywords: BDNF; NF-ΚB; NMDA receptors; Stress; TrkB receptors; brain preconditioning; brain tolerance; stroke

Document Type: Research Article


Publication date: October 1, 2008

More about this publication?
  • CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will contain a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in neurological and CNS disorders. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more