Skip to main content

Free Content Venous Collateral Circulation of the Extracranial Cerebrospinal Outflow Routes

Download Article:
 Download
(PDF 314.4 kb)
 

Abstract:

A new nosologic vascular pattern that is defined by chronic cerebrospinal venous insufficiency (CCSVI) has been strongly associated with multiple sclerosis. The picture is characterized by significant obstacles of the main extracranial cerebrospinal veins, the jugular and the azygous system, and by the opening of substitute circles. The significance of collateral circle is still neglected. To the contrary, substitute circles are alternative pathways or vicarious venous shunts, which permit the drainage and prevent intracranial hypertension. In accordance with the pattern of obstruction, even the intracranial and the intrarachidian veins can also become substitute circles, they permit redirection of the deviated flow, piping the blood towards available venous segments outside the central nervous system. We review the complex gross and radiological anatomy of collateral circulation found activated by the means of EchoColor-Doppler and selective venography in the event of CCSVI, focusing particularly on the suboccipital cavernous sinus (SCS), the condylar venous system, the pterygoid plexus, the thyroid veins, and the emiazygous-lumbar venous anastomosis with the left renal vein.





Keywords: Cerebrospinal venous insufficiency (CCSVI); cerebral venous system; collateral circulation; multiple sclerosis (MS)

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/156720209788970054

Publication date: August 1, 2009

More about this publication?
  • Current Neurovascular Research (CNR) provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum for the publication of novel and pioneering original work as well as timely neuroscience research reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridge the gap between basic science research and clinical discovery. CNR emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.
ben/cnr/2009/00000006/00000003/art00008
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more