Skip to main content

Blood Brain Barrier Compromise with Endothelial Inflammation may Lead to Autoimmune Loss of Myelin during Multiple Sclerosis

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Multiple sclerosis is an autoimmune disease characterized by multifocal areas of inflammation and demyelination within the central nervous system. The mechanism that triggers the disease remains elusive. However, recent findings may indicate that multiple sclerosis, at its source, could be a hemodynamic disorder. It has been found that multiple sclerosis patients exhibit significant stenoses in extracranial veins draining the central nervous system (in azygous and internal jugular veins), which are associated with significant pressure gradients measured across strictures. Such anatomic venous abnormalities were not found in the control group of healthy subjects. In this review, it is hypothesized that pathological refluxing venous flow in the cerebral and spinal veins increases the expression of adhesion molecules, particularly intercellular adhesion molecule-1 (ICAM-1), by the cerebrovascular endothelium. This, in turn, could lead to the increased permeability of the blood-brain barrier. Inflamed and activated endothelium could secrete proinflammatory cytokines, including GM-CSF and TGF-beta. In these settings, monocytes could transform into antigenpresenting cells and initiate an autoimmune attack against myelin-containing cells. Consequently, a potential therapeutic option for multiple sclerosis could be pharmacotherapy with either substances that strengthen the tight-junctions barrier, or with agents that reduce the expression of adhesion molecules. In addition, surgical correction could be an option in some anatomical variants of pathologic venous outflow. We are optimistic that a hemodynamic approach to the multiple sclerosis pathogenesis can open a new chapter of investigations and treatment of this debilitating neurologic disease.





Keywords: Adhesion molecules; blood-brain barrier; multiple sclerosis; venous insufficiency

Document Type: Research Article

DOI: https://doi.org/10.2174/156720209788185605

Publication date: 2009-05-01

More about this publication?
  • Current Neurovascular Research (CNR) provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum for the publication of novel and pioneering original work as well as timely neuroscience research reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridge the gap between basic science research and clinical discovery. CNR emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more