Skip to main content

Single-stranded DNA-based Immobilization of Ag Nanoparticles for Enzymeless H2O2 Detection

Buy Article:

$68.00 + tax (Refund Policy)

In this communication, we report a new method for effective immobilization of Ag nanoparticles (AgNPs) on thiolated singlestranded DNA (thiol-ssDNA) modified Au electrode (AuE) surface via coordination interactions between the nitrogen atoms of DNA bases and AgNPs. It suggests that the AgNP-immobilized AuE exhibits notable catalytic performance for H2O2 reduction and the loading of AgNPs on the AuE surface and therefore the effective catalytic area can be tuned by the immobilization time of thiol-ssDNA and adsorption time of AgNPs. This H2O2 sensor has a fast amperometric response time of less than 3 s and its linear range and detection limit are estimated to be from 0.1 mM to 160 mM (r = 0.995) and 0.8 μM at a signal-to-noise ratio of 3, respectively.

Keywords: Ag nanoparticle; Au electrode; Immobilization; enzymeless H2O2 detection; signal-to-noise ratio; thiolated single-stranded DNA

Document Type: Research Article

Publication date: 01 April 2012

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content