Skip to main content

Synthesis and Surface Functionalization of Water-soluble Quantum Dots

Buy Article:

$55.00 plus tax (Refund Policy)

Quantum Dots (QDs) for bio-imaging applications need to be water-stable, exhibit high brightness and physico-chemical stability in order to prevent the leakage of toxic ions. In the present work, the direct synthesis of water-soluble CdSe quantum dots and their surface functionalization were achieved through a micro-wave assisted approach in aqueous phase. Glutathione, an essential tri-peptide, was used to functionalize the QDs as an attempt to develop a non-toxic and biocompatible surface. X-ray diffraction analyses suggested that as-synthesized QDs exhibited an alloy arrangement with an average crystallite size of 3.2 nm. HRTEM measurements suggested a size of around 4 nm for glutathione-functionalized QDs. Stable aqueous suspensions of QDs showed strong visible emission (551nm and 561 nm for bare and glutathione-functionalized QDs) under 460nm excitation. The presence of glutathione in the QDs’s surface was confirmed by FT-IR and NRM spectroscopy measurements. Surface characterization of QDs by using FT-IR indicated that glutathione was chemisorbed onto the surface of the CdSe QDs as carboxylate (vas COO at 1630 cm-1 and vs COO at 1390 cm-1). These water-stable glutathione- functionalized QDs can be considered a very promising nanomaterial for bio-labeling and imaging.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: FT-IR; NMR; functionalization; glutathione; nanoparticles; quantum dots; spectroscopy

Document Type: Research Article

Publication date: 2012-04-01

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more