Skip to main content

Er-Doped ZnO Nanorod Arrays with Enhanced IR Emission by Using Au Island Films

Buy Article:

$63.00 plus tax (Refund Policy)

Self-assembled nanorod array (NRA) heterostructures consisting of single-crystalline Er-doped ZnO NRAs on Au island films have been synthesized by a chemical method and proposed as one of the promising optoelectronic materials since the Er intra-4f shell transition leads to 1540 nm emission for optical communication. The microstructural analysis, electronic structure analysis, and photoluminescence characterizations have been performed. The enhanced 1540 nm emission of Er-doped ZnO NRAs is due to the enhancement of deep level emission of ZnO host, which results from local field enhancement effects of Au island films, and subsequent energy transfer to Er3+.

No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Au Island Films; Er; Er-doped semiconductors; IR emission; ZnO; nanorod; nanowire; photoluminescence; surface Plasmon

Document Type: Research Article

Publication date: 2011-04-01

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more