Skip to main content

Icosahedral Ni Nanowires Formed from Nanocontacts Breaking: Identification and Characterization by Molecular Dynamics

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

We present and discuss an algorithm to identify and characterize the long icosahedral structures (staggered pentagonal nanowires with 1-5-1-5 atomic structure) that appear in Molecular Dynamics simulations of metallic nanowires of different species subjected to stretching. The use of this algorithm allows the identification of pentagonal rings forming the icosahedral structure as well as the determination of its number np , and the maximum length of the pentagonal nanowire Lpm. The algorithm is tested with some ideal structures to show its ability to discriminate between pentagonal rings and other ring structures. We applied the algorithm to Ni nanowires with temperatures ranging between 4K and 865K, stretched along the [111], [100] and [110] directions. We studied statistically the formation of pentagonal nanowires obtaining the distributions of length Lpm and number of rings np as function of the temperature. The Lpm distribution presents a peaked shape, with peaks located at fixed distances whose separation corresponds to the distance between two consecutive pentagonal rings.





Keywords: Molecular dynamics; embedded atom method; icosahedral nanowires; metallic nanocontacts; metallic nanowires; pentagonal nanowires

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/157341311794653668

Publication date: April 1, 2011

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
ben/cnano/2011/00000007/00000002/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more