Skip to main content

Variable Range Hopping in Carbon Nanotubes

Buy Article:

$68.00 + tax (Refund Policy)

Carbon nanotubes exhibit exceptional properties that are a consequence of their symmetric structure. Many properties of carbon nanotubes (CNTs) have been explained in the wider context of materials science, thereby highlighting the contribution from different researchers worldwide in this rapidly expanding field. Among various other properties of CNTs studied so far, the electrical transport properties are still unclear and needs a lot of attention. Due to high anisotropy of graphite, the electrical properties are strongly dependent on the structure of the nanotubes. Since, the CNTs can be metallic and semi-conducting in nature, their explanation to electrical conduction mechanism in these two cases would be different. During the last few years, efforts have been made to understand the electrical transport phenomenon in CNTs, aiming at the design of nanoelectronic devices made solely of carbon. Keeping in view the above, it is of great interest to present a state of art on the progress involving the research work on electrical conduction mechanism especially variable range hopping in CNTs. In the present paper, we have presented a review on electrical transport mechanism especially variable range hopping in carbon nanotubes. This review will provide a better understanding of variable range hopping in CNTs.





Keywords: 1D localization length; A-B; B-doping; Bloch's theorem; CGVRH; Carbon nanotubes; Coulomb interaction energy; D-band; DOS; EPR; ES-VRH; FESEM; FIBB; G-band; GNRs; HRTEM; LPCVD; M-VRH; MR; MWNTs; Ohm's law; SEM; SG-CNTs; TEM; TLT; UCF; VARIABLE RANGE HOPPING; WL; conductor; covalent bonds; e-beam lithography; electrical transport; electrical transport properties; focused ion beam; hexagons; individual carbon nanotube; multi-walled carbon nanotubes; resistivity; single-walled carbon nanotubes; temperature; variable range hopping

Document Type: Research Article

Publication date: 01 December 2010

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content