Skip to main content

An Investigation of Mass Sensitivity of Fixed Free Single Walled Carbon Nanotube Based Nano Mechanical Sensors

Buy Article:

$55.00 plus tax (Refund Policy)

In the present paper, the simulation of the mechanical responses of individual carbon nanotubes treated as thin shells has been done using finite element method. The resonant frequencies of the fixed free single wall carbon nanotube have been investigated. This analysis explores the resonant frequency shift of Single Walled Carbon Nanotubes caused by the changes in the size of Carbon Nanotube in terms of length as well as the attached masses. The results showed the sensitivity of the single walled carbon nanotubes to different masses (attached to the tip and at the centre of Single Walled Carbon Nanotube) and different lengths. It has also observed that the mass sensitivity of carbon nanotube can reach upto 10-21 g of attached mass and the mass sensitivity increases when smaller size nanotubes resonators are used in mass sensors. In order to explore the suitability of the Single walled carbon nanotube as a mass detector device, the simulation results of the resonant frequency of fixed free Single Walled Carbon Nanotube are compared to the published experimental data. It is shown that the FEM simulation results are in good agreement with the experimental data and hence the current modelling approach is suitable as a coupled-field design tool for the development of Single Walled Carbon Nanotube -based NEMS applications.

No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: ANSYS; CNT; Electron beam-induced deposition; Euler-Bernoulli beam model; FEM; Finite Element Model; Resonant Frequency; SWCNT; Single walled carbon nanotube; Young's modulus; area; density; femtograms; frequency; length; mass sensor; moment of inertia; nanooscillator; nanotube resonators; vibration

Document Type: Research Article

Publication date: 2010-12-01

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more