Skip to main content

Effect of TiO2 Nanotube Morphology on the Formation of Apatite Layer in Simulated Body Fluid

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

The objective of this work is to discuss the microstructural effect of TiO2 nanotubes on formation mechanism and morphology of apatite layer. An anodization method was employed to prepare self-organized TiO2 nanotubes on the surface of pure titanium, followed by these substrates being soaked in simulated body fluid (SBF) to form a bioactive layer. By manipulating the anodization time between 0.5 h and 3 h, nanotubes could be grown of any desired length ranging from 662 ± 5 nm to 1291 ± 5 nm. The diameter of rod-like apatite layer grown on the nanotubes decreased yet subsequently increased with the variation of nanotubular surface morphology and length. In addition, the nanotube length dependence of apatite formation can be ascribed to the different dissolution rate of nanotubes during the deposition of calcium phosphate (Ca-P) coatings, as well as the different penetration rate of Ca and P ions toward nanotube layer.





Keywords: Ca-P layer; TiO2 nanotubes; anodic oxidation; biomimetic growth

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/157341310791171144

Publication date: June 1, 2010

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more