Skip to main content

Nanomechanical Response of Indented Multilayered Nanofilms with Size Effect

Buy Article:

$63.00 plus tax (Refund Policy)


Nanomechanical response of indented aluminum/titanium (Al/Ti) multilayered films were characterized using an Auger electron spectrometer, focused ion beam (FIB) machining, and transmission electron microscopy (TEM). The pure and multilayered films on Si(100) substrates were prepared using the radio frequency magnetron sputtering process. The empirical Hall-Petch relationship and its reverse effect on nanoindentation load-displacement curves, hardness, and Young's moduli were discovered in individual layers at thicknesses of 28, 14, and 7 nm, respectively. The contributions of atomic sliding grain boundaries and their Al/Ti interfaces were studied. The Hall-Petch effect was seen in thickness of about 3.5 nm for its well blending at such nanometer scale.

Keywords: Hall-Petch effect; Hardness; Multilayer; Nanoindentation; Size effect

Document Type: Research Article


Publication date: April 1, 2010

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more