Skip to main content

Synthesis and Optical Properties of CuS Nanocrystals by Mechanical Alloying Process

Buy Article:

$63.00 plus tax (Refund Policy)

CuS nanocrystals in hexagonal structure have been synthesized by mechanical alloying the elemental Cu and S powders. CuS compound was formed through the reaction of Cu + S → CuS, which was initiated only 100 seconds after the mechanical alloying process started. XRD pattern suggests that pure CuS nanocrystals in hexagonal structure were obtained after mechanical alloying process was carried out for 40 hours. The as-milled CuS nanocrystals were subsequently capped with organic-inorganic compsite ligand of trioctylphosphine oxide / trioctylphosphine / nitric acid (TOPO/TOP/NA). The morphology of the as-milled and capped CuS nanocrystals has been studied by transmission electron microscope (TEM). The size of capped CuS nanocrystals ranges from 2 nm to 10 nm. The capped CuS nanocrystals show similar optical properties to the CuS nanocrystals prepared by wet chemical process, the absorption peaks for capped CuS nanocrystals locate within the wavelength range of 656 to 665 nm.

No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: CuS nanocrystals; Mechanical alloying; Microstructure; Optical properties

Document Type: Research Article

Publication date: 2010-04-01

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more