Skip to main content

Size Effect on the Phase Stability of Nanostructures

Buy Article:

$63.00 plus tax (Refund Policy)


An extension of the classical thermodynamics to nanometer scale has been conducted to elucidate information regarding size dependence of phase transition functions and binary phase diagrams. The theoretical basis of the extension is Lindemann's criterion for solid melting, Mott's expression for vibrational melting entropy, and Shi's model for size dependent melting temperature. These models are combined into a unified one without adjustable parameters for melting temperatures of nanocrystals. It is shown that the melting temperature of nanocrystals may drop or rise depending on interface conditions and dimensions. The model has been applied to size dependences of melting enthalpy and atomic cohesive energy, critical temperatures for glass transition, ferromagnetic transition, ferroelectric transition, superconductor transition and ferromagnetic-antiferromagnetic transition. Moreover, the above modeling has been utilized to determine the size-dependent continuous binary solution phase diagrams, bi-layer transition diagrams of metallic multilayers, and solid transition phase diagrams after modeling the transition entropy and atomic interaction energy functions of nanocrystals. Moreover, the model has been used to predict size dependence of diffusion activation energy and diffusion coefficient. These thermodynamic approachs have extended the capability of the classical thermodynamics to the thermodynamic phenomena in the nanometer regime.

Keywords: Nanocrystals; Phase diagram; Phase transition; Surface and interface; Thermodynamics

Document Type: Research Article


Publication date: May 1, 2008

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics