Theoretical Simulations of Scanning Probe Microscopy for Organic and Inorganic Materials

$71.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Current topics are introduced from the results for the JST (Japan Science and Technology Agency) project for the development of the theoretical simulator of scanning probe microscopy. In spite of the crucial role played by the theoretical simulation for understanding experimental results, the theoretical calculations so far tried have been computationally very demanding. Thus one of the aim of this project is the development of efficient methods for the simulation of STM(Scanning Tunneling Microscopy), AFM(Atomic Force Microscopy) and KFM(Kelvin Force Microscopy) and their spectroscopy. Toward this purpose the simplified and efficient calculation program, as well as user friendly GUI tools for the wide range users are aimed in the JST SPM project. Another targets of the project are the development of a new frontier of the SPM simulation, in particular, for supporting experiments on biological and organic molecular systems, and for the measurement in liquids.

We will discuss for the STM simulation the inelastic tunneling processes and decorated tip model. As for the AFM, we consider how to treat the dynamic cantilever motion in liquids, and the theoretical simulation for some of the protein molecules.



Keywords: AFM simulation; BCA II Molecule; Green fluorescent protein (GFP); Kelvin Force Microscopy (KFM); Scanning Tunneling Microscopy (STM)

Document Type: Research Article

Affiliations: Department of Nanoscience and Nanoengineering, Graduate School of Science and Engineering, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku Tokyo 162-0041, Japan.

Publication date: February 1, 2007

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more