STAT3 as a Central Regulator of Tumor Metastases
Metastasis is a major cause of morbidity and mortality in patients with cancer. The molecular mechanisms that control metastasis are related to alterations in various oncogenes, tumor suppressor genes, metastasis suppressor genes, and growth factors and their receptors. These abnormalities affect the downstream signal transduction pathways involved in the control of cell growth and other malignant properties. One of the most recognized signal transduction pathways involves the signal transducer and activator of transcription 3 (STAT3) protein. STAT3, known to be activated by numerous cytokines, growth factors, and oncogenic proteins, is constitutively phosphorylated in several clinical cancer specimens and cell lines, leading to cell transformation and tumorigenesis. STAT3 target genes are involved in multiple steps of metastasis, including invasion, cell survival, self-renewal, angiogenesis, and tumor-cell immune evasion. Furthermore, the inhibition of STAT3 by a variety of mechanisms can exert anti-tumor and anti-metastasis effects. These findings suggest that STAT3 might be an excellent target for therapeutic intervention in tumor metastases. This review highlights the pivotal role of STAT3 in tumor metastases and in therapeutic strategies to target the STAT3 signaling pathway for the inhibition of metastases.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: Angiogenesis; Invasion; Metastasis; STAT3; Transcription factor
Document Type: Research Article
Publication date: June 1, 2009
- Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal will invite guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.