Skip to main content

Transcriptional Responses of Mycobacterium tuberculosis Exposed to Adverse Conditions In Vitro

Buy Article:

$68.00 + tax (Refund Policy)

Mycobacterium tuberculosis encounters a range of stimuli in the host. Understanding the environmental cues that initiate the transcriptional response of M. tuberculosis, which enable the bacterium to replicate and/or survive in the host, will provide markers that are specific to different stages of disease, further refining the search for improved treatments and vaccines. Studying M. tuberculosis gene expression in vivo is technically challenging and more amenable in vitro experiments are being used to aid interpretation and to dissect the signals that are responsible for controlling subsets of genes. Key parameters that affect the growth of a pathogen in the host include nutrient status, environmental pH, oxygen availability, and host defences. Studying gene expression, pathogenicity, and physiology of M. tuberculosis that has been exposed to these relevant host conditions in vitro will further increase our understanding of the virulence factors that M. tuberculosis requires to establish disease. Complementary information obtained by metabolic flux analysis, proteomics, and regulatory networks analysis will enable a clearer picture of how transcriptional responses translate to changes in the metabolome and physiology of the organism.





Keywords: Latency; carbon starvation; chemostat; hypoxia; iron-limitation; nitric oxide; re-activation; regulation

Document Type: Research Article

Publication date: 01 May 2007

More about this publication?
  • Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal will invite guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content