Skip to main content

Lessons from the Eker Rat Model: From Cage to Bedside

Buy Article:

$68.00 + tax (Refund Policy)

Rodent models of human diseases serve a vital role in translating bench observations to bedside therapies. In vivo manipulation of these animals allows us to explore the biologic significance of the underlying molecular and biochemical pathways. The study of human cancers has been highly enriched by the observations made from numerous transgenic mouse models. Long before the techniques of genetic engineering were discovered, Dr. Reidar Eker described one of the earliest examples of an autosomal dominant model of renal tumors in a unique strain of rats. They were used in the 1980's by Alfred Knudson to validate the “two-hit” hypothesis and to study the multi-step process of carcinogenesis. Following the identification of the Tsc2 germline mutation in the Eker rat, it became the first rodent model of tuberous sclerosis and has since been exploited in many areas of tumor biology as illustrated in the content of this issue. The focus of our review is to highlight the contribution of the Eker rat towards understanding the Tsc2 signaling pathways in tumorigenesis and evaluating potential therapeutics in the pre-clinical setting.

Keywords: cancer genetics; carcinogenesis; eker rat; homozygote mutant; tumor suppressor genes; wistar strain

Document Type: Review Article

Affiliations: Department of Surgery,University of Washington, 1959 NE Pacific St. Box 356410, Seattle, WA 98195, USA.

Publication date: 01 December 2004

More about this publication?
  • Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal will invite guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content