Skip to main content

Antineoplastic Activities, Apoptotic Mechanism of Action and Structural Properties of a Novel Silver(I) Chelate

Buy Article:

$55.00 plus tax (Refund Policy)

In a previous work, the author has investigated the antimicrobial and cytotoxic properties of tartaric and glutamic acids silver(I) chelates. In a following work, the author has reported on the in vitro cytotoxicity and the mechanism of action of a silver(I) tartaric acid chelate synthesized by the author given the title name Aliargentumycine (AAgM) on hematopoietic malignancies. The in vitro antineoplastic activities of AAgM on solid human breast ductal carcinoma (T- 47D) and disseminated T-cell acute lymphoblastic leukemia (Jurkat) cell lines, its mechanism of action and its structural properties were investigated here. The cytotoxicity results of AAgM were compared to cisplatin, a ubiquitously used platinum-based antitumor drug. Results have indicated that AAgM demonstrated excellent cytotoxicity on both tumor cell lines studied when compared to cis-platin, especially for T-47D. Unlike cisplatin, AAgM was found to exhibit an aberrant triphasic cytotoxicity profile. Phase I exhibited cytotoxicity in the nanoconcentration range, Phase II exhibited no cytotoxicity in the intermediate range, and finally Phase III exhibited cytotoxicity in the microconcentration range. Phase II lacks of cytotoxicity might be an indication of cells reverting back to being nonmalignant in a similar way to 5-Aza-2’- deoxycytidine (decitabine). Quantitative pharmacokinetic-pharmacodynamic analyses were undertaken and were found that AAgM induced significantly better cytotoxic activities than cisplatin between 1.9-30.5 ng/mL while cisplatin did not exhibit any cytotoxicity on T-47D below 122 ng/mL. TUNEL assay was performed and AAgM was found to elicit its antineoplastic activities by apoptosis. X-ray diffraction showed that AAgM is a polymeric chain hydrate structure with no imposed symmetry and the complex around the silver is a monohydrate distorted skew trapezoidal bipyramidal sixcoordinate. AAgM is composed of lipophilic and hydrophilic moieties, making AAgM miscible in both lipids via the tartrate rings and ionic solutions via the water molecules. The results are expected to have significant implications on cancer therapy, especially solid neoplasms, which are exceptionally difficult to treat, and those derived from epithelial and mesenchymal cells, which are not prone to apoptotic responses with cdk inhibitor drugs. Also, the results should be very useful in the design of future novel silver-based antineoplastic drugs.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Apoptosis; Cisplatin; Cytotoxicity; Decitabine; Disseminated neoplasms; IC50; Jurkat T-cell acute lymphoblastic leukemia; Mechanism of action; Mesenchymal; Necrosis; Oligodynamic; Pharmacodynamics & pharmacokinetics; Silver(I) tartaric acid chelate; Solid neoplasms; Structure; T-47D human breast ductal carcinoma; TUNEL assay; Trypan blue exclusion method; X-ray crystallography

Document Type: Research Article

Publication date: 2013-06-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more