Skip to main content

Bisacylimidoselenocarbamates Cause G2/M Arrest Associated with the Modulation of CDK1 and Chk2 in Human Breast Cancer MCF-7 Cells

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Bisacylimidoselenocarbamate derivatives (BSC) are potent anticancer agents with a strong cytotoxic activity against different types of tumour cells. Based in phosphatidylserine exposure on the cell membranes we show that BSC treatment resulted in enhanced cell death in leukaemia CCRF-CEM cells. DNA fragmentation detection in breast adenocarcinoma MCF-7 cells showed that BSC triggered cell death is concentration and time dependent. We also show that two of these compounds, BSC 3g and 3n, cause cell-cycle arrest in the late G2/M in MCF-7 cells. Consistent with this, a reduction in CDK1 and CDK2 expression with no change in cyclin A an B1 was observed in this cell line. Activation of caspase-2 was also detected. However, the involvement of the caspase-dependent pathway in the process of cell death induced by either BSC 3g or 3n is discarded since cell death could not be prevented by pretreatment with the pancaspase inhibitor z-VAD-fmk. Moreover, since reduced levels of p21CIP1 and Chk2 proteins but no change in p53 levels could be detected in MCF-7 cells after BSC 3g or 3n treatment our results suggest that BSC treated cells die from lethal mitosis.

Keywords: Bisacylimidoselenocarbamates; CDK1; Chk2; G2/M cell cycle arrest; MCF-7 breast cancer cells

Document Type: Research Article

Publication date: 2013-06-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more