Skip to main content

Metabotropic Purinergic Receptors in Lipid Membrane Microdomains

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

There is broad evidence that association of transmembrane receptors and signalling molecules with lipid rafts/caveolae provides an enriched environment for protein-protein interactions necessary for signal transduction, and a mechanism for the modulation of neurotransmitter and/or growth factor receptor function. Several receptors translocate into submembrane compartments after ligand binding, while others move in the opposite direction. The role of such a dynamic localization and functional facilitation is signalling modulation and receptor desensitization or internalization. Purine and pyrimidine nucleotides have been viewed as primordial precursors in the evolution of all forms of intercellular communication, and they are now regarded as fundamental extracellular signalling molecules. They propagate the purinergic signalling by binding to ionotropic and metabotropic receptors expressed on the plasma membrane of almost all cell types, tissues and organs. Here, we have illustrated the localization in lipid rafts/caveolae of G protein-coupled P1 receptors for adenosine and P2Y receptors for nucleoside tri- and di-phosphates. We have highlighted that microdomain partitioning of these purinergic GPCRs is cell-specific, as is the overall expression levels of these same receptors. Moreover, we have described that disruption of submembrane compartments can shift the purinergic receptors from raft/caveolar to non-raft/non-caveolar fractions, and then abolish their ability to activate lipid signalling pathways and to integrate with additional lipid-controlled signalling events. This modulates the biological response to purinergic ligands and most of all indicates that the topology of the various purinergic components at the cell surface not only organizes the signal transduction machinery, but also controls the final cellular response.

Keywords: Adenosine; GPCR; caveolae; extracellular ATP; lipid rafts; membrane microdomains; neurotransmitter; purinergic receptors; signalling molecules; transmembrane receptors

Document Type: Research Article

Publication date: 2013-01-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more