Skip to main content

The Role of a Disturbed Arginine/NO Metabolism in the Onset of Cancer Cachexia: A Working Hypothesis

Buy Article:

$63.00 plus tax (Refund Policy)

Cancer cachexia is a complex catabolic state in patients with a malignancy, associated with increased morbidity and mortality. This syndrome is characterized by a redistribution of the body's protein content and a subsequent muscle wasting. The aetiology of this syndrome seems multifactorial, but remains unclear. It is suggested that this catabolic state occurs in response to the alterations in immune interactions between tumor and host. The amino acid arginine and its derivate nitric oxide (NO) play various roles in anti-tumor immune response and the body’s homeostasis. Glutamine is the precursor for arginine de novo synthesis and the most abundant amino acid in the body, mainly stored in skeletal muscle. Tumors develop a protection mechanism against the specific anti-tumor attack of the immune system by recruiting myeloid derived suppressor cells (MDSC). The MDSC deplete arginine levels and disturb NO production. We here hypothesize that the perturbation of the arginine/NO metabolism plays a significant role in the aetiology of cancer cachexia. Arginine/ NO metabolism is disturbed in patients with cancer. The body will try to correct this perturbation by mobilizing arginine and glutamine from muscles. The decreased arginine levels and the disturbed NO production activate several cascades, which in turn inhibit protein synthesis and promote proteolysis, leading to cachexia. Cachexia remains one of the most frequent and damaging opportunistic syndromes in cancer patients. In this review we will elaborate on a new hypothesised concept and the underlying mechanisms of this syndrome. New studies are essential to ground this hypothesis and to develop interventions to break through the pathological mechanisms underlying cachexia.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Arginase; MDSC; arginine; cancer cachexia; glutamine; iNOS; immune system; nitric oxide; protein synthesis; proteolysis

Document Type: Research Article

Publication date: 2012-11-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more