Skip to main content

Selective Divalent Copper Chelation for the Treatment of Diabetes Mellitus

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Oxidative stress and mitochondrial dysfunction have been identified by many workers as key pathogenic mechanisms in ageing-related metabolic, cardiovascular and neurodegenerative diseases (for example diabetes mellitus, heart failure and Alzheimer’s disease). However, although numerous molecular mechanisms have been advanced to account for these processes, their precise nature remains obscure. This author has previously suggested that, in such diseases, these two mechanisms are likely to occur as manifestations of a single underlying disturbance of copper regulation. Copper is an essential but highly-toxic trace metal that is closely regulated in biological systems. Several rare genetic disorders of copper homeostasis are known in humans: these primarily affect various proteins that mediate intracellular copper transport processes, and can lead either to tissue copper deficiency or overload states. These examples illustrate how impaired regulation of copper transport pathways can cause organ damage and provide important insights into the impact of defects in specific molecular processes, including those catalyzed by the copper-transporting ATPases, ATP7A (mutated in Menkes disease), ATP7B (Wilson’s disease), and the copper chaperones such as those for cytochrome c oxidase, SCO1 and SCO2. In diabetes, impaired copper regulation manifests as elevations in urinary CuII excretion, systemic chelatable-CuII and full copper balance, in increased pro-oxidant stress and defective antioxidant defenses, and in progressive damage to the blood vessels, heart, kidneys, retina and nerves. Linkages between dysregulated copper and organ damage can be demonstrated by CuII-selective chelation, which simultaneously prevents/reverses both copper dysregulation and organ damage. Pathogenic structures in blood vessels that contribute to binding and localization of catalytically-active CuII probably include advanced glycation endproducts (AGEs), as well as atherosclerotic plaque: the latter probably undergoes AGE-modification itself. Defective copper regulation mediates organ damage through two general processes that occur simultaneously in the same individual: elevation of CuII-mediated pro-oxidant stress and impairment of copper-catalyzed antioxidant defence mechanisms. This author has proposed that diabetes-evoked copper dysregulation is an important new target for therapeutic intervention to prevent/reverse organ damage in diabetes, heart failure, and neurodegenerative diseases, and that triethylenetetramine (TETA) is the first in a new class of anti-diabetic molecules, which function by targetting these copper-mediated pathogenic mechanisms. TETA prevents tissue damage and causes organ regeneration by acting as a highly-selective CuII chelator which suppresses copper-mediated oxidative stress and restores anti-oxidant defenses. My group has employed TETA in a comprehensive programme of nonclinical studies and proof-of-principle clinical trials, thereby characterizing copper dysregulation in diabetes and identifying numerous linked cellular and molecular mechanisms though which TETA exerts its therapeutic actions. Many of the results obtained in nonclinical models with respect to the molecular mechanisms of diabetic organ damage have not yet been replicated in patients’ tissues so their applicability to the human disease must be considered as inferential until the results of informative clinical studies become available. Based on evidence from the studies reviewed herein, trientine is now proceeding into the later stages of pharmaceutical development for the treatment of heart failure and other diabetic complications.

Keywords: Atherosclerosis; copper deficiency; copper overload; copper-selective chelation; diabetes mellitus; diabetic arteriopathy; diabetic cardiomyopathy; diabetic nephropathy; diabetic neuropathy; diabetic retinopathy; divalent copper; experimental pharmacology; experimental therapeutics; heart failure; hydroxyl radical; iron regulation; mitochondrial dysfunction; organ regeneration; oxidative stress; randomized clinical trials; superoxide anion; superoxide dismutase; triethylenetetramine (TETA); zinc regulation

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986712800609715

Affiliations: Room 1.004, AV Hill Building, School of Biomedicine, University of Manchester, Oxford Road, Manchester M13 9PT, UK.

Publication date: June 1, 2012

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
ben/cmc/2012/00000019/00000017/art00011
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more