Skip to main content

Interacting with γSecretase for Treating Alzheimer's Disease: From Inhibition to Modulation

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Drugs currently used for the treatment of Alzheimer's disease (AD) produce limited clinical benefits, and there is no diseasemodifying therapy yet available. Compounds that inhibit or modulate γ-secretase, the pivotal enzyme that generates β-amyloid (Aβ), are potential therapeutics for AD. This article briefly reviews the profile of γ-secretase inhibitors and modulators that have reached the clinic. Studies in both transgenic and non-transgenic animal models of AD have indicated that γsecretase inhibitors, administered by the oral route, are able to lower brain Aβ concentrations. However, scanty data are available on the effects of these compounds on brain Aβ deposition after prolonged administration. γ-Secretase inhibitors may cause abnormalities in the gastrointestinal tract, thymus, spleen, skin, and decrease in lymphocytes and alterations in hair color in experimental animals and in man, effects believed to be associated with the inhibition of the cleavage of Notch, a transmembrane receptor involved in regulating cell-fate decisions. Unfortunately, two large Phase III clinical trials of semagacestat in mild-to-moderate AD patients were prematurely interrupted because of the observation of a detrimental cognitive and functional effect of the drug. These detrimental effects were mainly ascribed to the inhibition of the processing of an unknown substrate of γ-secretase. It has been also hypothesized that the detrimental cognitive effects observed after semagacestat administration are due to the accumulation of the neurotoxic precursor of Aβ (the carboxy-terminal fragment of amyloid precursor protein, APP, or CTFβ) resulting from the block of the γ-secretase cleavage activity on APP. Some non-steroidal anti-inflammatory drugs and other small organic molecules have been found to modulate γsecretase shifting its cleavage activity from longer to shorter Aβ species without affecting Notch cleavage. However, two large Phase III studies in mild AD patients with tarenflurbil, a putative γ- secretase modulator, were also completely negative. The failure of tarenflurbil was ascribed to low potency and brain penetration. New more selective γ-secretase inhibitors and more potent, more brain penetrant γ-secretase modulators are being developed with the hope of overcoming the previous setbacks. Further understanding of the reasons of the failures of these γ-secretase-based drugs in AD may be important for the future research on effective treatments for this devastating disease.





Keywords: Alzheimer's disease; Notch processing; dementia; mild cognitive impairment; semagacestat; tarenflurbil; β-amyloid; γ-secretase complex; γ-secretase inhibitors; γ-secretase modulators

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986711798194351

Publication date: December 1, 2011

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
ben/cmc/2011/00000018/00000035/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more