Skip to main content

Role of Phosphorylation in the Nuclear Biology of HIV-1

Buy Article:

$63.00 plus tax (Refund Policy)


The central events of HIV-1 life cycle occur at the nuclear level where the viral genome is integrated into the host cellular DNA in order to be expressed and replicated. The viral pre-integration complexes (PICs) are actively transported in the nuclear compartment where integration occurs in specific regions of the cellular chromatin. Similar to all viruses, HIV-1 encodes for a limited number of proteins that are insufficient to produce new viral progenies. Several cellular pathways are thus hijacked by HIV-1 to efficiently complete the replication cycle. The majority of viral proteins are substrates for cellular kinases indicating a pivotal role of these cellular enzymes at multiple steps of the HIV-1 life cycle. The nuclear biology of the cell is highly controlled by kinases (nuclear transport, DNA replication, repair and transcription) and many of these kinases also sustain the viral nuclear events. This review summarizes our current knowledge on kinases that are involved in HIV-1 replication cycle at the nuclear level, both directly through their catalytic activity on viral proteins and indirectly being activated by the virus. Among viral proteins directly modified by kinases is integrase (IN) the factor that catalyzes the integration of HIV-1 in the cellular genome. Notably, this recent discovery may shed light onto mechanisms underlying the different susceptibility of the main cell types targeted by HIV-1 (CD-4+ T-cell) depending on their activation status. Alternatively, kinases may act indirectly such as in the case of DNA repair factors activated following HIV-1 infection and demonstrated to regulate the viral life cycle.

Finally, inhibition of cellular kinases interacting with HIV-1 at the nuclear level has been shown to severely affect the viral replication cycle, thus suggesting potential new therapeutic approaches.

Keywords: Capsid; HIV-1; Integrase; Kinases; Matrix; Nucleus; Phosphorylation; Rev; Tat; Vpr

Document Type: Research Article


Publication date: 2011-06-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more