Skip to main content

Amphiphilic Polysaccharide-Hydrophobicized Graft Polymeric Micelles for Drug Delivery Nanosystems

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Self-assembled amphiphilic graft copolymers in aqueous solution to form polymeric micelles, have received growing scientific attention over the years. Among the polymeric micelles, hydrophobicized polysaccharides have currently become one of the hottest researches in the field of drug delivery nanosystems. It is attributable to such appealing properties as small particle size and narrow size distribution, distinctive core-shell structure, high solubilization capacity and structural stability, tumor passive localization by enhanced permeability and retention (EPR) effect, active targeting ability via tailored targeting promoiety, long-circulation property and facile preparation. The polymeric micelles self-assembled by hydrophobicized polysaccharides can be employed as targeted drug delivery nanosystem by including thermo- or pH-sensitive components or by attaching specific targeted moieties to the outer hydrophilic surface. Beside encapsulation of water-insoluble drugs, hydrophobicized polysaccharide polymeric micelles can complex with charged proteins or peptide drugs through electrostatic force or hydrogen bond, and serve as an effective non-viral vector for gene delivery. In the latter case, polymeric micelles can not only markedly protect these macromolecules from degradation by protease or ribozymes, but also increase the gene transfection efficiency. This review will highlight the state of the art self-assembled mechanism, characterization, preparation methods and surface modification of hydrophobicized polysaccharide polymeric micelles and their recent rapid applications as drug delivery nanosystems.





Keywords: EPR effect; PEGylation; Polymeric micelles; active drug targeting modification; amphiphilic graft copolymer; drug delivery system; drug-polysaccharide conjugates; hydrophobicized polysaccharides; pharmaceutical application; preparation method

Document Type: Research Article

DOI: https://doi.org/10.2174/092986711795933696

Publication date: 2011-06-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more