Skip to main content

Tumor Physiology and Charge Dynamics of Anticancer Drugs: Implications for Camptothecin-based Drug Development

Buy Article:

$55.00 plus tax (Refund Policy)

Charge is an important characteristic of drug molecules, since ionization sites determine the pKa at a particular pH. The pKa in turn can affect many parameters, including solubility, dissolution rate, reaction kinetics, formulation, cell permeability, tissue distribution, renal elimination, metabolism, protein binding and receptor interactions. The impact of charge dynamics is amplified in human solid tumors that exhibit the glycolytic phenotype and associated acidic extracellular microenvironment. This phenotype is driven by hypoxia and creates a pH gradient in tumors that favors uptake of weak acids and exclusion of weak bases. Established anticancer drugs exhibit a range of pKa's and thus variable ability to exploit the tumor pH gradient. The camptothecins are a prime example as they represent a diverse class of approved anticancer drugs and drug candidates whose charge distribution varies with pH. An in silico method was used to predict charge distribution of camptothecins at physiological versus acidic pH in both the lactone and carboxylate forms. A significant amount of uncharged carboxylate was predicted at acidic pH that could enter tumor cells and accumulate in mitochondria to inhibit mitochondrial topoisomerase I. A model is presented to describe the charge dynamics of a new camptothecin analog and the impact on nuclear and mitochondrial mechanism(s) of action. This example illustrates the importance of integrating tumor physiology and charge dynamics into anticancer drug development.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Anticancer; Camptothecin; charge dynamics; glycolytic phenotype; hypoxia; ionization; pKa; receptor; topoisomerase I; tumor pH gradient

Document Type: Research Article

Publication date: 2011-03-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more