Skip to main content

The Methylerythritol Phosphate (MEP) Pathway for Isoprenoid Biosynthesis as a Target for the Development of New Drugs Against Tuberculosis

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Tuberculosis remains a major infectious disease to humans. It accounts for approximately 8-9 million new cases worldwide and an estimated 1.6 million deaths annually. Effective treatments for tuberculosis consist of a combination of several drugs administered over long periods of time. Since Mycobacterium tuberculosis often acquires multiple drug resistant mechanisms, development of new drugs with innovative actions is urgently required. The 2C-methyl-D-erythritol 4-phosphate (MEP) pathway, in charge of the essential biosynthesis of isoprenoids, represents a promising and selective target for developing new drugs against tuberculosis. To date, only fosmidomycin, a molecule that targets the second enzyme of the MEP pathway, has reached clinical trials but recent advances elucidating the structure and kinetics of the MEP enzymes are likely to change this scenario. This review describes the structure, mechanism of action and inhibitors of the seven enzymes of the MEP pathway, with special attention to the reported studies in M. tuberculosis.





Keywords: Drug development; Fosmidomycin; Isoprenoid Biosynthesis; Isoprenoid biosynthesis; MEP pathway; Mycobacterium tuberculosis; N-terminal; enzymes; homologous proteins; isomer

Document Type: Research Article

DOI: https://doi.org/10.2174/092986711795029582

Publication date: 2011-03-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more