Skip to main content

In Silico Methods to Assist Drug Developers in Acetylcholinesterase Inhibitor Design

Buy Article:

$55.00 plus tax (Refund Policy)

Alzheimer's disease (AD) is a neurodegenerative disease characterized by a low acetylcholine (ACh) concentration in the hippocampus and cortex. ACh is a neurotransmitter hydrolyzed by acetylcholinesterase (AChE). Therefore, it is not surprising that AChE inhibitors (AChEIs) have shown better results in the treatment of AD than any other strategy. To improve the effects of AD, many researchers have focused on designing and testing new AChEIs. One of the principal strategies has been the use of computational methods (structural bioinformatics or in silico methods).

In this review, we summarize the in silico methods used to enhance the understanding of AChE, particularly at the binding site, to design new AChEIs. Several computational methods have been used, such as docking approaches, molecular dynamics studies, quantum mechanical studies, electronic properties, hindrance effects, partition coefficients (Log P) and molecular electrostatic potentials surfaces, among other physicochemical methods that exhibit quantitative structure-activity relationships.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: AChEIs; Alzheimer's disease; In silico methods; Protein Data Bank; SAR; acetylcholinesterase; docking; hindrance effects; molecular dynamics; sequence alignment

Document Type: Research Article

Publication date: 2011-03-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more