Skip to main content

Novel Substituted Quinazolines for Potent EGFR Tyrosine Kinase Inhibitors

Buy Article:

$63.00 plus tax (Refund Policy)


The type I receptor tyrosine kinases (RTKs) are involved in various aspects of cell growth, survival, and differentiation. Among the known RTKs, the epidermal growth factor receptor (EGFR) and ErbB-2 (HER-2) are two widely studied proteins that are prototypic members of the ErbB family which also includes ErbB-3 (Her-3) and ErbB-4 (Her-4). Overexpression of ErbB-2 and EGFR has been associated with aggressive disease and poor patient prognosis in a range of human tumour types (e.g. breast, lung, ovarian, prostate, and squamous carcinoma of head and neck). Disruption of signal transduction of these kinases has been shown to have an antiproliferative effect. Various approaches have been developed to target the ErbB signalling pathways including monoclonal antibodies (trastuzumab/ Herceptin™ and cetuximab/Erbitux™ ) directed against the receptor, and synthetic tyrosine kinase inhibitors (gefitinib/Iressa™ and erlotinib/Tarceva™). Since many tumours overexpress ErbB receptors, simultaneous targeting of multiple ErbB receptors therefore becomes a promising approach to cancer treatment. Lapatinib (Tykerb™), a potent dual EGFR/ErbB-2 inhibitor, was approved for the treatment of ErbB-2-positive breast cancer. Despite years of intensive research on EGFR inhibitors, there is a surprising dearth of chemically distinct small inhibitors with a high degree of selectivity. There is also a need for new scaffolds due to the recent finding of EGFR mutations which render the kinase resistant to gefinitib and erlotinib. The structures under study will be quinazolines with different substituents. The structure-activity relationships and biological evaluation of compounds published during the last four years will be reviewed herein.

Keywords: Antitumour; EGFR; ErbB receptors; HER-2; bioisostere; erlotinib; gefitinib; quinazoline; simultaneous targeting; type I receptor tyrosine kinases; tyrosine kinase inhibitor

Document Type: Research Article


Publication date: 2011-03-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more