Skip to main content

A Step Further Towards Multitarget Drugs for Alzheimer and Neuronal Vascular Diseases: Targeting the Cholinergic System, Amyloid-β Aggregation and Ca2++ Dyshomeostasis

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting mainly elderly people. The reasons why AD occurs are complex and multifactorial and several biochemical targets are thought to play a key role in its progress and development. This fact has led to the development of a multitarget-directed ligand strategy as a logical approach for designing a suitable therapy. Currently, most prescribed drugs for treating AD are acetylcholinesterase inhibitors (AChEI), although these inhibitors represent solely palliative treatment. This account will summarize our current therapeutic approach for the design of multitarget drugs primarily aimed at inhibiting AChE using the key features of tacrine, which was the first approved drug for AD treatment. Secondly, as calcium homeostasis is directly related to the cell death-survival equilibrium, suitable therapy might include an action that regulates calcium homeostasis by means of targeting voltage dependent calcium channels. It is, therefore, hoped that targeting calcium homeostasis will lead directly to the development of potential neuroprotective agents. Thus, 1,4-dihydropyridines, well-known voltage-dependent calcium channel (VDCC) ligands, will be incorporated into the new molecules as a second structural feature in order to bring about this action. As a result of this development, herein, we describe the synthetic and pharmacological profile of new [1,8]-naphthyridine analogues, which are hybrids of tacrine and 1,4-dihydropyridines. Some of our molecules have shown improved inhibitory action against cholinesterases, whilst maintaining their VDCC modulating activity, and have good characteristics as neuroprotective agents. Based on kinetic analysis of the AChE inhibition experiments, it has been shown that many of the compounds bind at the peripheral anionic site (PAS). Since the AChE PAS is linked to β-amyloid aggregation, this would give a third biological target for further preclinical development, making these molecules highly interesting targets in the search to obtain better treatments for AD.





Keywords: 1,4- dihydropyridines; AChE inhibition; AChE peripheral anionic site; Alzheimer's disease; Ca2+ dyshomeostasis; Ca2+ overload; Cholinergic System; Neuronal Vascular Diseases; Nimodipine; Tacrine; Tacripyrines; World Health Organization; acetylcholine (ACh); agnosia; amyloid hypothesis; amyloid β; aphasia; apolipoprotein E; apraxia; arylidenemalononitriles; brain parenchyma; cho-linergic hypothesis; dementia; hepatotoxicity; hypotheses; multitarget drugs; multitarget-directed-ligands; neurodegenerative diseases (NDDs); neuroprotection; nicotinic acetylcholine receptors; oxidative stress; pyranotacrines; reactive oxygen species; tau hyperphosphorylation; voltage dependent calcium channels

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986711794480186

Publication date: February 1, 2011

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more