Skip to main content

The Role of Survivin for Radiation Oncology: Moving Beyond Apoptosis Inhibition

Buy Article:

$63.00 plus tax (Refund Policy)


Alterations in the expression of apoptosis-related proteins, like the inhibitor of apoptosis (IAP) protein family, display a pivotal pathway by which cancer cells acquire resistance to therapeutic treatment. Among this family, survivin, the smallest and structural unique member, deserves growing attention due to its universal over-expression in human tumors, and its prominent role in disparate networks of cellular division, intracellular signaling and apoptosis. Several preclinical studies have demonstrated that targeting survivin expression by the use of small interfering RNAs, dominant negative mutants, antisense-oligonucleotides and small molecule repressors sensitized tumor cells towards chemotherapy and irradiation and reduced tumor growth potential. Due to these properties, survivin has been proposed as a molecular target for anticancer therapies. Recent studies further revealed that radio-sensitization achieved by survivin inhibition seems to be multifaceted and involves caspase-dependent and caspase-independent mechanisms. In general, an enhanced rate of apoptosis, and pronounced cell cycle arrest have been observed. More recently, a hampered DNA-damage response has been noted, indicating a distinct role of the protein in radiation-induced double strand break repair. These properties were linked to a nuclear import and physical interrelationship with members of the DNA-DSB repair machinery such as phospho-histone H2AX and DNA dependent Protein Kinase (DNA-PKcs). The applicability of survivin-driven strategies in clinical practice is currently under investigation as the first survivin inhibitors successfully entered phase I/II trials. Although these trials do not include radiation therapy at present, survivin inhibitors may represent a novel type of molecular antagonists to improve the effectiveness of radiation therapy or chemoradio- therapy.

Keywords: Apoptosis; Co-immunoprecipitation; DNA dependent Protein Kinase; DNA-repair; Heat shock proteins; antisense-oligonucleotides; apoptosis; apoptosis protein; baculovi-rus IAP repeat; caspases; chemoradiation; chemoradio-therapy; cytosine methyltransferase 1; forkhead box O1; glioblastoma; hepatitis B X-interacting protein (HBXIP); histopathological; homodimer; immunotherapy; inhibitor of apoptosis; lymphoma; malignant cells; nuclear factor-kappa B; oligonu-cleotides; peptidomimetics; phospho-histone H2AX; phosphorylation; positron emission tomography (PET); radiooncology; radiosensitization; rapamycin; small interfering RNAs; survivin; ubiquitin-proteasome

Document Type: Research Article


Publication date: 2011-01-01

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more